Circles- Chords, Secants and Tangents

Circles and Chords

- A ________________ is a segment that joins two points of the circle.
- A ________________ is a ____________ that contains the ________________ of the circle.
- A ________________ is a line that intersects a circle in ________ places and continues through the circle. A secant ________________ through a circle.

Theorems:

1. In a circle, a radius ______________________ to a chord __________________ the chord.
2. In a circle, a radius that __________________ a chord is ______________________ to the chord.
3. In a circle, the ______________ of a chord passes through the ______________ of the circle.

Proof of Theorem 1:

Given: \(\odot O, \overline{OD} \perp \overline{AB} \)
Prove: \(\overline{OD} \) bisects \(\overline{AB} \)

<table>
<thead>
<tr>
<th>Given</th>
<th>Prove</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\odot O, \overline{OD} \perp \overline{AB})</td>
<td>(\overline{OD}) bisects (\overline{AB})</td>
</tr>
<tr>
<td>Draw (\overline{OA}, \overline{OB})</td>
<td>Two points make a line</td>
</tr>
<tr>
<td>(\angle OEA, \angle OEB) are right angles</td>
<td>(\perp) lines form right angles</td>
</tr>
<tr>
<td>(\triangle OEA, \triangle OEB) are right triangles</td>
<td>(\text{right angles contain one right angle})</td>
</tr>
<tr>
<td>(\overline{OA} \cong \overline{OB})</td>
<td></td>
</tr>
<tr>
<td>(\overline{OE} \cong \overline{OE})</td>
<td></td>
</tr>
<tr>
<td>(\triangle OAE \cong \triangle OBE)</td>
<td></td>
</tr>
<tr>
<td>(\overline{AB} = \overline{BE})</td>
<td></td>
</tr>
<tr>
<td>(E) is the midpoint of (\overline{AB})</td>
<td>midpoint divides into (m) parts</td>
</tr>
<tr>
<td>(\overline{OD}) bisects (\overline{AB})</td>
<td>bisector intersects at midpoint</td>
</tr>
</tbody>
</table>

Theorem 4:

In a circle, or congruent circles, __________________ chords are ___________________________ from the center.

Problems using Theorem 4:

Find \(x \).

Theorem 5:

In a circle, or congruent circles, congruent ________________ have congruent ________________.

Theorem 6:

In a circle, ______________________________ intercept congruent ______________. Note, the _______________ are not necessarily congruent, just the _______________ are.

Problems using Theorems 5 and 6:

Find the measure of each arc.

- \(x + 8 \) arc
- \(3x \) arc

Solution:

\[(x + 40)^\circ \]
Circles - Chords, Secants and Tangents

Closing: Complete the chart.

<table>
<thead>
<tr>
<th>Theorem</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a radius (\perp) to a chord (\perp) the chord.</td>
</tr>
<tr>
<td>2</td>
<td>a radius that bisects the chord is (\perp) to the chord and they will therefore meet at (\perp) angles.</td>
</tr>
<tr>
<td>3</td>
<td>the (\perp) bisector of a chord can help you find the (\perp) of the circle.</td>
</tr>
<tr>
<td>4</td>
<td>If two chords are equidistant from the center of a circle, they are (\perp) congruent chords have (\perp) (\perp) between them are (\perp)</td>
</tr>
<tr>
<td>5</td>
<td>(\perp) bisector of a chord can help you find the (\perp) of the circle.</td>
</tr>
<tr>
<td>6</td>
<td>If two chords are parallel, the two (\perp) between them are (\perp)</td>
</tr>
</tbody>
</table>

Homework Week 3: (Due 1/29/09) Complete Set A.

Tangents and Circles

A tangent to a circle is \(\perp \) in the plane of the circle that \(\perp \) the circle.

If you spin an object in a circular orbit and release it, it will travel on a path that is tangent to the circular orbit.

If a line is tangent to a circle, it is \(\perp \) to the \(\perp \) drawn to the point of tangency.

IF: \(AB \) is a tangent
\[D \] is point of tangency
THEN: \(\overline{CD} \perp \overline{AB} \)

Example 1:

What must be the length of \(LM \) for this segment to be tangent line of the circle with center \(N \)?

Because the tangent is perpendicular (meets at a \(\perp \)) to the \(\perp \), we can use the \(\perp \) to find the length of \(LM \).

Determining if a line is a tangent

Because the tangent is perpendicular to the radius, we can use the Pythagorean Theorem to determine if a line is a tangent. If we do not get a true statement using the Pythagorean Theorem, the line is NOT a tangent.

How many, if any, of the circles above have tangent line? In both cases \(X \) is the center of the respective circles.

Theorem:

Tangent segments to a circle from the \(\perp \) are \(\perp \).

IF: \(AB \) is a tangent to circle \(O \) at \(A \)
\(\overline{CB} \) is a tangent to circle \(O \) at \(C \)
THEN: \(AB \equiv CB \)

(You may think of this as the "Hat" Theorem because the diagram looks like a circle wearing a pointed hat.)

\(\overline{OAB} \equiv \overline{OCB} \) by the \(\perp \) theorem.
Circles - Chords, Secants and Tangents

Common Tangents: Common tangents are lines or segments that are tangent to more than one circle at the same time.

<table>
<thead>
<tr>
<th>4 Common Tangents (2 completely separate circles)</th>
<th>3 Common Tangents (2 externally tangent circles)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 Common Tangents (2 overlapping circles)</th>
<th>1 Common Tangents (2 internally tangent circles)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The only ways to have no Common Tangents:

<table>
<thead>
<tr>
<th>0 Common Tangents (2 concentric circles)</th>
<th>0 Common Tangents (one circle floating inside the other, without touching)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rules for Dealing with Chords, Secants, Tangents in Circles

Theorem 1:
If two chords intersect in a circle, the _______________________ of the lengths of the _______________________ of one _________ equal the __________________ of the segments of the other.

Intersecting Chords Rule:
\[(\text{segment piece}) \cdot (\text{segment piece}) = (\text{segment piece}) \cdot (\text{segment piece})\]

Example:
In the circle below, the chord segments have the following lengths: A= 6, C=3, D=4. Use the theorem for the product of chord segments to find the value of B.

Example:
In the circle below, the chord segments have the following lengths: A= x + 4, B=3, D= 6. Use the theorem for the product of chord segments to find the value of C.

Closing: Complete the chart.

<table>
<thead>
<tr>
<th>Def.</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>tangents intersect a circle in _______ point.</td>
</tr>
<tr>
<td>2</td>
<td>a tangent is ______________________________ to the radius of the circle.</td>
</tr>
<tr>
<td>3</td>
<td>Tangent segments to a circle from the same external point are______________.</td>
</tr>
<tr>
<td>4</td>
<td>Because tangents are perpendicular to the radius, we can use the _______________________ to find missing lengths.</td>
</tr>
<tr>
<td>5</td>
<td>circles can have up to ______ common tangents if they do not intersect and are not inside one another.</td>
</tr>
<tr>
<td>6</td>
<td>Between two circles there can be ________________ tangents and ________________ tangents.</td>
</tr>
</tbody>
</table>

Homework Week 3: (Due 1/29/09)
Complete Set B.
Example 1:
Solving for x using the Secant-Secant Rule

Secant-Secant Rule:
(whole secant)•(external part) = (whole secant)•(external part)

<table>
<thead>
<tr>
<th>whole secant</th>
<th>external part</th>
<th>whole secant</th>
<th>external part</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example 2:
Solving for x using the Secant-Secant Rule

Secant-Secant Rule:
(whole secant)•(external part) = (whole secant)•(external part)

<table>
<thead>
<tr>
<th>whole secant</th>
<th>external part</th>
<th>whole secant</th>
<th>external part</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If a secant segment and tangent segment are drawn to a circle from the ________________, the product of the length of the ________________ segment and its external ____________ equals the ________________ of the length of the ________________ segment.

Example:

Secant-Tangent Rule:
(whole secant)•(external part) = (tangent)2

In the following problem, the red line is a tangent of the circle, what is its length?

<table>
<thead>
<tr>
<th>secant</th>
<th>external part</th>
<th>tangent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Theorem 3:

Secant-Tangent Rule:
(whole secant)•(external part) = (tangent)2

If a secant segment and tangent segment are drawn to a circle from the ________________, the product of the length of the ________________ segment and its external ____________ equals the ________________ of the length of the ________________ segment.

Example:
You may have to solve tangent problems by factoring a quadratic equation.

- First, Outer, Inner, Last

Remember, the product of two binomials is a quadratic equation.

The middle term is formed by the __________ of the outer and inner products.

What is its length of the external part of the secant?

<table>
<thead>
<tr>
<th>whole secant</th>
<th>external part</th>
<th>tangent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Closing: Complete the chart.

<table>
<thead>
<tr>
<th>Theorem</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Theorem Diagram]</td>
<td>If two chords intersect in a circle, the ______ of the segments of one chord equal the ______ of the segments of the other.</td>
</tr>
<tr>
<td>![Theorem Diagram]</td>
<td>If two secant segments intersect the same __________ point, the product of one __________ segment and its external __________ equals the product of the other __________ segment and its external __________.</td>
</tr>
<tr>
<td>![Theorem Diagram]</td>
<td>If a secant and tangent segment are intersect the same __________ point, the product of the __________ segment and its external __________ equals the __________ of the tangent segment.</td>
</tr>
</tbody>
</table>

Homework Week 3: (Due 1/29/09)
Complete Set C.